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The most important calorimetric methods have been reviewed: the differential 
thermal analysis (DTA) as basic disposition and the scanning calorimetry (DSC) as 
well as the adiabatic rate calorimetry (ARC). The thermal circuits of these are expressed 
by bond diagrams as conceived by topological thermodynamics. It has been stated 
that the heat flux associated with the process of transformation is virtually (uncompen- 
sated) transferred in the DTA system, really transferred (compensated) in the DSC 
and ARC systems, between the two containers through a transfer medium assumed to 
be purely dissipative. 

Calorimetry was developed along with the notions of thermodynamics. Thus, drop 
calorimetry is the most direct means for studying the state functions (enthalpy, 
entropy, encraty etc.) through the response measurable Cv or Cv [1 ]. Until recently, 
the time evolution of these functions was not taken into account. The main factors 
were considered to be the close heat leakage between the source (generator) and 
lLhe sample, and the lower amplitude of the thermal perturbation (adiabatic 
transfer), and additionally the usage of a low performance system of measurement 
and control of the adiabatic conditions. Therefore, the perturbing flux is assumed 
1Lo be transferred to the material instantaneously and isotropically. 

Following the extension of these calorimetry studies, it was noticed that the 
measurables show specific peculiarities around a critical temperature with certain 
~materials. In these domains, the equilibrium thermodynamics are no longer valid, 
as for T ~ T c the equilibrium of the system is ever harder to attain, even under 
:isothermal conditions, because of the critical fluctuations [2]. Thus, however low 
the perturbation may be, it can no longer be considered as being transferred under 
adiabatic conditions. Recent studies [3] on a large number of organic substances 
defined as glassy crystals have demonstrated that in an adiabatic calorimetric 
system the state functions are subjected to relaxation phenomena associated 
with certain processes of structural changes. The influence of the characteristics 
of the thermal perturbation on the response of the material could be emphasized 
:for these cases. Lately, the process of transformation denoted as Tim, also observed 
in polyethylene through the response measurable Cp(T) by flash calorimetry [4], 
could be thoroughly studied [5]. 

In general, it can be stated for all transformation phenomena that a perturba- 
tion of the system induces phenomena of mass and energy transfer into the mate- 
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rial. In this case we shall have to resort to non-equilibrium thermodynamics for 
the interpretation of the response measurables. The scanning calorimetric methods 
recently developed, such as differential thermal analysis (DTA) [6], differential 
scanning calorimetry (DSC) [7, 8] and adiabatic rate calorimetry (ARC) [9], allow 
more rapid revelation of these transformations. The scanning technique is based 
on the indirect (the case of the DTA system) or direct (the case of DSC and 
ARC systems) recording of the heat fluxes exchanged between the source and the 
material during the calorimetric round. This operation is effected through a 
measurable function of the whole system. The purpose of the present work is to 
find a way of developing a formalism of interpretation of a heat flux associated 
with the process of transformation, keeping in mind the phenomena of transport 
occurring in the calorimetric round. Two general common aspects will be taken 
into account viz. the relaxation nature of the heat and mass transfer process, 
and the composite nature of the material subjected to the process of transforma- 
tion. These two aspects justify the approach of the non-equilibrium thermody- 
namics in the topologic concept recently devised by Oster and Auslander [10] for 
the case referring to the establishment of external thermal circuits of the three 
calorimetric systems taken into account. 

Constitutive relations 

The DTA system is the simplest one, lying at the basis of the other two men- 
tioned above. Figure 1 shows this basic disposition [7], that can be represented 
after the following description: 

Equipotential surfaces C (the surface of the generator), CR (the surface of the 
reference container) and Cs (the surface of the sample container) have at the 
moment t the temperatures T, TR and Ts, respectively. Between C and Cr,, on the 
one hand, and C and Cs, on the other, the respective exchanged fluxes wl(t) and 
w2(t) are transferred through the medium R, assumed to be purely dissipative [10]. 

T. 

elt> "4 

Fig. 1. Schematic representation of the DTA system as basic disposition 
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The two circuits are assumed to be independent. These natural fluxes can be 
expressed by the gradients O1 = T -  TR and O~ = T -  Ts, respectively, taking 
into account the finite propagation speed of the thermal perturbation [11], 
tlhrough the relationship: 

t 
wi(t ) = J" M(t  - t ') Oi(t') dt', i --- 1, 2.  (1) 

0 

This convolution relation can be abbreviated as follows: 

wi(t ) = M @ Oi, i = 1, 2 (1') 
o r  

l~i(p) = 3~t(p) 6)i(P), i = 1, 2 (1") 

where the upper sign defines the Laplace transformation and p is the complex 
'variable [12]. The function M(t )  is defined in the theory of heat transfer with 
!finite speed, as the heat-flux relaxation function [11], and is characteristic of the 
leakage medium R. 

In the DTA system the response measurable is the differential signal O = O1 - 02. 
As in all measurement systems, this is assumed to be linear. Physically, this can 
be expressed as follows: if a process of transformation associated with an internal 
heat flux w(t) is produced in a container (for instance Cs), then the causality 
condition [13 ] can be written as follows: 

t 
O(t)  = ~ R(t  - t ' )w( t ' )  dt '  = R |  w 

6 
o r  

(2) 

6) =/~IY (2') 

From the general theory of linear systems (see e.g. [12]), the function 29/(p) is 
defined as the transfer function, and/~(p) as the response function of the system, 
the relationship 

/~(p)--- l//~(p) (3) 

existing between them. 
By subtraction of Eq. (1) we get 

~- ~'~Z 1 - -  ~Z 2 = l ~ 1 9  (4)  

which can also be obtained through a reversal of Eq. (2), taking into account (3). 
This result formally expresses the fact that the flux w(t) of the transformation 
process is virtually transferred between the two containers Cs and C R through 
the purely dissipative medium characterized by the transfer function 1//~(p). 

Equation (2) represents the response O(t)  of the system at the moment t, if the 
perturbation flux starts at the moment t '  = 0. In order to evaluate the total 
amount of energy E of the transformation process, the flux is considered to 
extend over the time interval (tinitia I ---= 0, tfina ! = T ) ,  s o  that 
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T 

E = f w(t)dt. 
0 

For a unitary step function as perturbation, defined as 

w~(t ,)={ 0, for t ' < 0  
1, for t '  > 0 

the corresponding response will be 

O~(t) = f R(t')dt' ,  
0 

or 01(p) = R / p .  (5) 

Taking into account the equality (5), we can rewrite Eq. (2) as 

o r  

which becomes 

0 = ~ g / =  pO~W 

g)/p = g91Y/ 

(6) 

t t 

.~ O(r)d~ = O 1 | w = S 01(t - t') w(t')dt' (6') 
0 0 

through inverse transformation [12]. it  can be considered that the integral 
t 

R(t')dt' for t ~ oo exists and is finite, so that 
0 

oo 

R = .f R(t')dt' 
0 

defines the equilibrium thermal conductivity of the leakage medium [11 ]. Then, 
for integration on the domain of existence of the process w(t) Eq. (6') becomes 

T T 

E = w(r)dT = 
0 0 

(6") 

which represents precisely the relationship used to estimate the amount of energy 
in the DTA system [6]. 

The fluxes w,(t) are considered as being accumulated by the containers CR 
and C s, respectively. The constitutive relation for this process of purely capacitive 
accumulation [10] can be written as 

d T m s -  wa,z(t ) (7) 
Ca, s dt 
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Bond diagrams for the thermal circuits 

Starting from the constitutive relations formulated above, one can represent 
the thermal circuits for the cases of the three tyws of scanning calorimeters. The 
concept of bond diagram given by Oster and Auslander for an energetic circuit 
in general will be used. Together with the description of circuits in these terms, 
the basic elements of this concept will be reviewed. 

R 
T 

a) 

R R 
T T 

c,. . , .  I , k  w' ( )w2d,I. .-cs 
"T  

t 
| 

b) generator c) 

Fig. 2. B o n d  d i a g r a m s  of  the  D T A  t h e r m a l  circuits 

The DTA system as basic disposition is essentially expressed by Eq. (4) of the 
virtual transfer of the flux w(t) between the two containers through the medium R. 
The bond diagram corresponding to this virtual circuit is represented in Fig. 2a. 

The flux w(t) is the same in the branches of the 1-junction, according to Kirch- 
hoff's law for currents [10] in purely dissipative elements. This diagram results 
from summing up the diagrams in Figs 2b and 2c, which describe the indepen- 
dent circuits of the two containers. In these diagrams, the causality of the branches 
for equal current junctions (1-junctions) and equal temperatures (0-junctions) [10], 
has been expressed in the concept of Oster and Auslander. 

The differential equation associated for instance with the circuit of the container 
C~, can be written by taking into account the constitutive relation of the purely 
dissipative element, the Ohm equation (4), and the purely capacitive equation (7). 
Equation (4) becomes successively: 

CapTR = ff'I (4') 
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for taking into account ( l ' )  

1 
T R  = (1 - pCRI~) IT'. ( 8 )  

If  the generator is considered to provide the equipotential surface at the temper- 
ature T( t )  = Kt ,  then T(p) = K/p  2 [12], and Eq. (8) becomes 

K 
~'~ = p 2 0  - p C R ~ )  ' (8') 

The product CRR - -c~ is the time constant for the capacitive accumulation of the 
element C~ through the dissipative medium R, while through transformation, 
Eq. (8) yields the solution (see ref. [12], Annexed Table) 

TR(t) = K t  + K z R ( e  - t / ' R  - -  1). (9) 

The result obtained is similar to that obtained by Kessis [6], taking into account 
a coefficient of superficial transfer between the two surfaces. By subtraction of the 
analogous equation obtained for the sample circuit in Eq. (9), the evolution of the 
baseline in the absence of the internal flux w(t)  results: 

Oo(t) = K ( % , e  - t / ~  - "Cs e - t / r s )  + K( 'Cs  - "oR). (10) 

After a period of relaxation ~ > zR,~, the baseline becomes horizontal and is 
shifted to zero with K(r s - rR) [6]. Under these conditions it is necessary that 
T( t )  = K t  and not any other function should be programmed through the gener- 
ator [6]. If, on the other hand, we eliminate the capacitive elements from the 
circuits (rr~,s ~ 0), the baseline remains unmodified through the equilibration 
wl -~ w2 ~ 0, the flux w(t)  alone subsisting. This elimination is effected precisely 

t Gp 
_J__ 

+X ,,| Ro 

. 4 n0~ S 
" x  ~'~" Transfer loop 

Io 

Fig. 3. Bond diagram of the D S C  thermal  circuits 
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through the extrapolation of  the baseline to the w(t) effect, through the tangent 
method. If  this retardation effect is negligible, the condition T(t) = Kt is no longer 
compulsory, because a boundary condition has not been necessary to estimate the 
total amount of energy E through (6"), as the temporary limiting of the effect is 
sufficient. For the isothermal case, the diagram in Fig. 2a shows the very case of 
the T ian-Calve t  type conduction calorimetry for which the relation analogous 
to (2') and (6"), as well as the explicit form of the function R(t), have been estab- 
lished [14]. 

The DSC system [7, 8] has a compensation circuit of the flux w(t), thus main- 
taining the temperature of the container Cs at the same value as that of C~. 

Figure 3 gives the bond diagram of the three thermal circuits, namely: (i) the 
transfer loop through the dissipative medium R, left from the basic disposition; 
(ii) the programming loop through generator Gp, by means of which TR and T s 
are maintained at an established evolution in time; and (iii) the compensation 
circuit by means of which a flux -w( t )  is superposed between the two containers 
through an artificial transfer function 1/R'. If the two dissipative media R 0 and 
R are naturally achieved, the medium R' results as a combination between these. 
Hence, for the case of attaining the steady-state response (t > zr~ s) [8], the fol- 
lowing relationships can be written 

1 ( f~  _ f ) ,  ~ = 

m; = 1 o(~R - ~p), 

~2 = ~ (Ts - T) (11) 

Ws = ~o(Ts - Tp) (12) 

m = ~ (rR - f s )  (13) 

corresponding to the three circuits. Applying the conservation law between the 
values 

a m =  m ~ - m 2 =  ~ 

1 ~ 
a m ' =  ~ ;  - m~ = ~0(T~ - &) 

we can write 

if" = A f t / +  AI~' = + (TI~ - Ts). (14) 

Comparing this result to Eq. (13), we obtain 

1 R'o+ /2 
~'  - ~ o  (15) 
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which is an identical result to that obtained by O'Neill (ref. [8], Eq. 2). Equation 
(15) shows that the compensation flux w(t) directly measured in the DSC system 
is really transferred (by the compensation loop) between the two containers 
through a dissipative medium with transfer function 1/R'. 

The ARC calorimetric system [9] records the flux w(t) associated with the trans- 
formation process, as also in the case of the DSC system. 

CR R" 
l 

_L T 
Iw 

_/_ 
RI"-- 2__ 

J 
Cs 

Fig. 4. Bond diagram of the ARC thermal circuit 

Figure 4 shows the bond diagram for the programming circuit (here denoted 
by the constant flux element F) [10] and the compensation circuit found within 
this system. The constant flux generator programmes the sample container CR 
(without any sample material) to a linear increase or decrease of temperature. 
In the presence of the sample, part of the flux Wo is accumulated by this. In order 
to maintain the sample programming, the flux w(t) is compensated. From the 
diagram it follows that R = R'. In this case of the ARC system, the flux w(t) is 
really transferred between the container and the sample through the leakage 
medium. 
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Rt~SUMI~ - -  Mise au point  sur les m6thodes calorim6triques les plus importantes:  l 'analyse 
thermique diff6rentielle (ATD) comme technique de base, l 'analyse calorim6trique diff6ren- 
tielle h compensat ion de puissance (DSC) et la calorim6trie ~t vitesse adiabatique (ARC). 
Les circuits thermiques de ces techniques s 'expriment par  des diagrammes de liaisons comme 
ceux con~us par  la thermodynamique topologique. On 6tablit que le flux de chaleur associ6 
au processus de la t ransformat ion est virtuellement transferr6 (sans compensation) en ATD 
et r6ellement transferr6 (avec compensation) en DSC et ARC, entre les deux conteneurs 
par un milieu de transfert  suppos6 ~tre purement  dissipatif. 

ZUSAMMENFASSUNG - -  Eine Ubersicht tiber die wichtigsten kalorimetrischen Methoden,  sowie 
die Differentialthermoanalyse (DTA) als Grundverfahren,  die Abtastkalorimetrie (DSC) und 
die adiabatische Geschwindigkeitskalorimetrie (ARC) wird gegeben. Die thermischen Kreise 
derselben werden durch Bindungsdiagramme, wie sie an Hand  der topologischen Thermo- 
dynamik erhalten werden, ausgedrtickt. Es wurde festgestellt, dass die W/irmestrSmung 
mit dem Umwandlungsprozess assoziiert scheinbar (unkompensiert)  in das DTA-System, 
wahrhaft ig (kompensiert) in die Systeme DSC und ARC tibertragen wird, undzwar  zwischen 
den zwei Beh~Itern dutch ein als rein zerstreuend angenommenes Transfermedium. 

Pe3ioMe - -  Hpe~IcTaBJ~e~o o6o3peurIe nan6o~ee Ba~rHb~x ~aJ~op11MeTpI~,~ec~11x MeTO~OB: ~Hqb- 
~bepeHtmaahnIaft TepMi~ecKri~ anaYtn3 (~TA) B ra~ecTBe ocrioBaoro MeTO/Ia, ~nqbqbepeui~rmnt,- 
11a~ cKa11Hpyromaa raaopnMeTpI4~ (~CK) n a~I~a6aTH~ecra~ CrOpOCTHa~ ~a~topaMeTprirt 
(ACK). TepM11qecr~e ~i~i~ar~ r~x B~,~pa~en~,~ c rtoMo~tI~,~o ~11arpaMM CBIt3II, 11ocTpoer~n~,~x 11a 
OCItOBe TonoJIoF11~IeCKO~ TepMoJIHI-IaMI, II<11. YCTaHOBJIeI-IO, qTO TenJIOBOf[ 11OTOK, CB~IgaI-IHt,I.~ 
C rlpoIIeCCOM npeBpaTJ2eHrla, qbarT!4qeCK11 He I~oMneHcllpoBa11H~M riepeHocH~ca B C11CTeMe ~ T A  
I1 KOMHettcllpoBa11HblM 17epelloc11JIc~ B CltCTeMe f~fK It ACI(. "~2/CTa11OBZleHo TaIOKe, tITO nepenoc 
cro Me~)Iy jIByMIt r~paeMia~raMff ~Iepe3 Maccoo~MeHHyto cpezty ~o~Dren 6bITb N11CTO pacce~n- 
H b I M .  
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